987 resultados para Development of drugs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary focus of this thesis was the asymmetric peroxidation of α,β-unsaturated aldehydes and the development of this methodology to include the synthesis of bioactive chiral 1,2-dioxane and 1,2-dioxalane rings. In Chapter 1 a review detailing the new and improved methods for the acyclic introduction of peroxide functionality to substrates over the last decade was discussed. These include a detailed examination of metal-mediated transformations, chiral peroxidation using organocatalytic means and the improvements in methodology of well-established peroxidation pathways. The second chapter discusses the method by which peroxidation of our various substrates was attempted and the optimisation studies associated with these reactions. The method by which the enantioselectivity of our β-peroxyaldehydes was determined is also reviewed. Chapters 3 and 4 focus on improving the enantioselectivity associated with our asymmetric peroxidation reaction. A comprehensive analysis exploring the effect of solvent, concentration and temperature on enantioselectivity was examined. The effect that different catalytic systems have on enantioselectivity and reactivity was also investigated in depth. Chapter 5 details the various transformations that β-peroxyaldehydes can undergo and the manipulation of these transformations towards the establishment of several routes for the formation of chiral 1,2-dioxane and 1,2-dioxalane rings. Chapter 6 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing concern about the impact of employees‟ alcohol and other drug (AOD) consumption on workplace safety and performance, particularly within the construction industry. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of AODs in the workplace and there is limited evidential guidance regarding how to effectively and efficiently address such an issue. The current research aims to scientifically evaluate the use of AODs within the Australian construction industry in order to reduce the potential resulting safety and performance impacts and engender a cultural change in the workforce - to render it unacceptable to arrive at a construction workplace with impaired judgement from AODs. The study will adopt qualitative and quantitative methods to firstly evaluate the extent of general AOD use in the industry. Secondly, the development of an appropriate industry policy will adopt a non-punitive and rehabilitative approach developed in consultation with employers and employees across the infrastructure and building sectors, with the aim it be adopted nationally for adoption at the construction workplace. Finally, an industry specific cultural change management program and implementation plan will be developed through a nationally collaborative approach. Final results indicate that a proportion of those sampled in the construction sector may be at risk of hazardous alcohol consumption. A total of 286 respondents (58%) scored above the cut-off cumulative score for risky or hazardous alcohol. Other drug use was also identified as a major issue. Results support the need for evidence-based, preventative educational initiatives that are tailored to the industry. This paper will discuss the final survey and interview results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents evidence for the interactions of several classes of cationic amphiphilic drugs including the phenothiazines, aminoquinolines, biguanides, and aromatic diamidines, with lipid A, the endotoxic principle of lipopolysaccharides. The interactions of the drugs were quantitatively assessed by fluorescence methods. The affinities of the drugs for lipid A parallel their endotoxin-antagonistic effects in the Limulus gelation assay. Dicationic compounds bind lipid A with greater affinity; the affinity of such molecules increases exponentially as a function of the distance between the basic moieties. The bis-amidine drug - pentamidine - examined in greater detail, binds lipid A with high affinity (apparent K-d: 0.12 mu M), and LPS, probably due to simultaneous interactions of the terminal amidine groups with the anionic phosphates on lipid A. The sequestration of endotoxin by pentamidine reduces its propensity to bind to cells, and the complex exhibits attenuated toxicity in biological assays. These results have implications in the development of therapeutic strategies against endotoxin-related disease states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a study aimed at determining the most important experimental parameters for automated, quantitative analysis of solid dosage form pharmaceuticals (seized and model 'ecstasy' tablets) are reported. Data obtained with a macro-Raman spectrometer were complemented by micro-Raman measurements, which gave information on particle size and provided excellent data for developing statistical models of the sampling errors associated with collecting data as a series of grid points on the tablets' surface. Spectra recorded at single points on the surface of seized MDMA-caffeine-lactose tablets with a Raman microscope (lambda(ex) = 785 nm, 3 mum diameter spot) were typically dominated by one or other of the three components, consistent with Raman mapping data which showed the drug and caffeine microcrystals were ca 40 mum in diameter. Spectra collected with a microscope from eight points on a 200 mum grid were combined and in the resultant spectra the average value of the Raman band intensity ratio used to quantify the MDMA: caffeine ratio, mu(r), was 1.19 with an unacceptably high standard deviation, sigma(r), of 1.20. In contrast, with a conventional macro-Raman system (150 mum spot diameter), combined eight grid point data gave mu(r) = 1.47 with sigma(r) = 0.16. A simple statistical model which could be used to predict sigma(r) under the various conditions used was developed. The model showed that the decrease in sigma(r) on moving to a 150 mum spot was too large to be due entirely to the increased spot diameter but was consistent with the increased sampling volume that arose from a combination of the larger spot size and depth of focus in the macroscopic system. With the macro-Raman system, combining 64 grid points (0.5 mm spacing and 1-2 s accumulation per point) to give a single averaged spectrum for a tablet was found to be a practical balance between minimizing sampling errors and keeping overhead times at an acceptable level. The effectiveness of this sampling strategy was also tested by quantitative analysis of a set of model ecstasy tablets prepared from MDEA-sorbitol (0-30% by mass MDEA). A simple univariate calibration model of averaged 64 point data had R-2 = 0.998 and an r.m.s. standard error of prediction of 1.1% whereas data obtained by sampling just four points on the same tablet showed deviations from the calibration of up to 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous identification, confirmation and quantitation of seven licensed anti-inflammatory drugs (AIDS) in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. Two classes of AIDS were investigated, corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). The developed method is capable of detecting and confirming dexamethasone (DXM), betamethasone (BTM), prednisolone (FRED), tolfenamic acid (TV), 5-hydroxy flunixin (5-OH-FLU). meloxicam (MLX) and 4-methyl amino antipyrine (4-MAA) at their associated maximum residue limits (MRLs). These compounds represent all the corticosteroids and NSAIDs licensed for use in bovine animals producing milk for human consumption. These compounds have never been analysed before in the same method and also 4-methyl amino antipyrine has never been analysed with the other licensed NSAIDs. The method can be considered rapid as permits the analysis of up to 30 samples in one day. Milk samples are extracted with acetonitrile; sodium chloride is added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid-liquid purification by the addition of hexane. The purified extract is finally evaporated to dryness and reconstituted in a water/acetonitrile mixture and determination is carried out by LC-MS/MS. Decision limit (CC alpha) values and detection capability (CC beta) values have been established for each compound. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Propolis has plenty of biological and pharmacological properties and its mechanisms of action have been widely investigated in the last years, using different experimental models in vitro and in vivo. Researchers have been interested in the investigation of isolated compounds responsible for propolis action; however, there is lack of clinical research on the effects of propolis.Strategy and objectives: Since propolis-containing products have been marketed and humans have used propolis for different purposes, the goal of this review is to discuss the potential of propolis for the development of new drugs, by comparing data from the literature that suggest candidate areas for the establishment of drugs against tumors, infections, allergy, diabetes, ulcers and with immunomodulatory action.Conclusions: The efficacy of propolis in different protocols in vitro and in vivo suggests its therapeutic properties, but before establishing a strategy using this bee product, it is necessary to study: (a) the chemical nature of the propolis sample. (b) Propolis efficacy should be compared to well-established parameters, e.g. positive or negative controls in the experiments. Moreover, possible interactions between propolis and other medicines should be investigated in humans as well. (c) Clinical investigation is needed to evaluate propolis potential in patients or healthy individuals, to understand under which conditions propolis may promote health. Data point out the importance of this research field not only for the readers and researchers in the scientific community waiting for further clarification on the potential of propolis but also for the pharmaceutical industry that looks for new drugs. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug abuse is a major global problem which has a strong impact not only on the single individual but also on the entire society. Among the different strategies that can be used to address this issue an important role is played by identification of abusers and proper medical treatment. This kind of therapy should be carefully monitored in order to discourage improper use of the medication and to tailor the dose according to the specific needs of the patient. Hence, reliable analytical methods are needed to reveal drug intake and to support physicians in the pharmacological management of drug dependence. In the present Ph.D. thesis original analytical methods for the determination of drugs with a potential for abuse and of substances used in the pharmacological treatment of drug addiction are presented. In particular, the work has been focused on the analysis of ketamine, naloxone and long-acting opioids (buprenorphine and methadone), oxycodone, disulfiram and bupropion in human plasma and in dried blood spots. The developed methods are based on the use of high performance liquid chromatography (HPLC) coupled to various kinds of detectors (mass spectrometer, coulometric detector, diode array detector). For biological sample pre-treatment different techniques have been exploited, namely solid phase extraction and microextraction by packed sorbent. All the presented methods have been validated according to official guidelines with good results and some of these have been successfully applied to the therapeutic drug monitoring of patients under treatment for drug abuse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A micro-electrospray interface was developed specifically for the neurobiological applications described in this dissertation. Incorporation of a unique nano-flow liquid chromatography micro-electrospray "needle" into the micro-electrospray interface (micro-ES/MS) increased the sensitivity of the mass spectrometric assay by $\sim$1000 fold and thus permitted the first analysis of specific neuroactive compounds in brain extracellular fluid collected by in vivo microdialysis (Md).^ Initial in vivo data presented deals with the pharmacodynamics of a novel GABA$\sb{\rm B}$ antagonist and the availability of the compound in its parent (unmetabolized) form to the brain of the anesthetized rat. Next, the first structurally specific endogenous release of (Met) $\sp5$-enkephalin was demonstrated in unanesthetized freely-moving animals (release of $\sim$6.5 fmole of (Met) $\sp5$-enkephalin into the dialysate by direct neuronal depolarization). The Md/micro-ES/MS system was used to test the acute effects of drugs of abuse on the endogenous release of (Met) $\sp5$-enkephalin from the globus pallidus/ventral pallidum brain region in rats. Four drugs known to be abused by man (morphine, cocaine, methamphetamine and diazepam) were tested. Morphine and cocaine both elicited a two-fold or more increase in the release of (Met) $\sp5$-enkephalin over vehicle controls. Diazepam elicited a small decrease in (Met) $\sp5$-enkephalin levels and methamphetamine showed no significant effect on (Met) $\sp5$-enkephalin. These results imply that (Met) $\sp5$-enkephalin may be involved in the reward pathway of certain drugs of abuse. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The facility to controlled triggered release from a “cage” system remains a key requirement for novel drug delivery. Earlier studies have shown that Bis-Azo PC based photosensitive liposomes are beneficial for drug delivery. Thus, the aim of this project was to develop photosensitive liposomes that can be used for the controlled release of drugs through UV irradiation, particularly therapeutic agents for the treatment of psoriasis. Bis-Azo PC was successfully synthesized and incorporated into a range of liposomal formulations, and these liposomes were applied for the controlled release of BSA-FITC. Bis-Azo PC sensitized liposomes were prepared via interdigitation fusion method. IFV containing optimum cholesterol amount in terms of protein loading, stability and photo-trigger release of protein was investigated. Further studies investigated the stability and triggered release of the HMT from IFV. Finally, permeation behavior of HMT and HMT-entrapped IFV through rat skin was examined using Franz cell. Results from protein study indicated that the stable entrapment of the model protein was feasible as shown through fluorescence spectroscopy and maximum of 84% protein release from IFV after 12 min of UV irradiation. Moreover, stability studies indicated that IFV were more stable at 4 0C as compared to 25 0C. Hence, DPPC:Chol:Bis-Azo PC (16:2:1) based IFV was chosen for the controlled release of HMT and these studies exhibited that photo-trigger release and stability data of HMT-entrapped IFV are in line with the protein results. Franz cell work inferred that HMT-entrapped IFV attributed to slower skin permeation as compared to HMT. CLSM also demonstrated that HMT can be used as a fluorescent label for the in vitro skin study. Overall, the work highlighted in this thesis has given useful insight into the potentials of Bis-Azo PC based IFV as a promising carrier for the treatment of psoriasis.